Targeting HbA1c in diabetes management: What are the key lessons from glucose lowering trials

Prof. Nikolaus Marx, MD
Aachen, Germany
Heart Failure: The next frontier for SGLT2 inhibitors?

Nikolaus Marx, MD, FESC, FAHA

Professor of Medicine / Cardiology
Head of Department of Internal Medicine I,
Cardiology, Angiology, and Intensive Care Medicine
University Hospital Aachen, Germany
Conflict of interest
Nikolaus Marx

• **Speaker:** Amgen, Bayer, Boehringer Ingelheim, Sanofi-Aventis, MSD, BMS, AstraZeneca, Lilly, NovoNordisk

• **Research grant:** Boehringer Ingelheim, MSD

• **Advisory board:** Amgen, Bayer, Boehringer Ingelheim, Sanofi-Aventis, MSD, BMS, AstraZeneca, NovoNordisk

NM declines all personal compensation from pharma or device companies
Heart Failure: The next frontier for SGLT2 inhibitors?

- Heart failure in diabetes
- SGLT2 inhibition and heart failure
- Effects of SGLT2 inhibitors in subjects without diabetes
Systolic heart failure =

HFREF (Heart failure with reduced ejection fraction)

Systolic heart failure:
- reduced contractile function

Normal

Dilatative cardiomyopathy
Diastolic heart failure =
HFPEF (Heart failure with preserved ejection fraction)

Diastolic heart failure:
- reduced relaxation
- impaired ventricular filling

Normal

Hypertrophic cardiomyopathy
Heart failure in diabetes

HF incidence by age group

- Diabetes
- No diabetes

Nichols GA et al. Diabetes Care 2004;27:1879

HF mortality in diabetes

~ 55%

Gustafsson et al. JACC 2004; 43:771-777
Impact of diabetes on outcomes in patients with HFrEF and HFpEF (CHARM program)

CV death or HHF in patients with or without diabetes based on ejection fraction category

- Increased risk for mortality and hospitalisation for HF in HF patients with diabetes
- HFpEF prognosis better than HFrEF
Heart failure with recurrent hospitalisation and a high risk for CV death and total mortality is the leading problem in type 2 diabetes in 2019!
Free fatty acids \uparrow

Insulin resistance

Hyperinsulinemia

Hyperglykämie

Myocardial hypertrophy

Altered myocardial metabolism
Fatty acid oxidation \uparrow

Myocardial energy production \downarrow

Decreased Ca handling

Myocardial apoptosis
Fibrosis

Oxidative stress

AGE deposition

Hexosamine pathway \uparrow
Altered myocardial Ca levels

Inflammation \uparrow

Myocardial hypertrophy

Microangiopathy
Myocardial stiffness

Impaired systolic function

Diabetic cardiomyopathy

Impaired diastolic function

after Savvaidis, Marx, Schütt
Der Diabetologe 2015; 11:379-387
Heart Failure:
The next frontier for SGLT2 inhibitors?

- Heart failure in diabetes
- SGLT2 inhibition and heart failure
 - Data from CVOTs
 - Patients with or without HF at baseline
 - Time course of risk reduction
 - Patients with or without HFrEF
- Effects of SGLT2 inhibitors in subjects without diabetes
SGLT2-Inhibition

Increased glucose filtration

Glomeruli

Increased glucose reabsorption

Proximal tubule

SGLT2 inhibitor

Increased urinary sodium excretion (temp.)

Increased urinary glucose excretion

After Marx et al. Eur Heart J 2016; 37(42):3192-3200
CVOTs with SGLT2 inhibitors

Baseline characteristics

<table>
<thead>
<tr>
<th>Baseline Variables</th>
<th>EMPA REG (Empagliflozin)</th>
<th>Integrated CANVAS Program (Canagliflozin)</th>
<th>DECLARE (Dapagliflozin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants (n)</td>
<td>7,034</td>
<td>10,142</td>
<td>17,160</td>
</tr>
<tr>
<td>Age (y)</td>
<td>63</td>
<td>63</td>
<td>64</td>
</tr>
<tr>
<td>Diabetes Duration (y)</td>
<td>57% > 10 y</td>
<td>13.5 y</td>
<td>10 y</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>31</td>
<td>32.0</td>
<td>32</td>
</tr>
<tr>
<td>A1C (%)</td>
<td>8.1</td>
<td>8.2</td>
<td>8.3</td>
</tr>
<tr>
<td>Prior CVD (%)</td>
<td>99</td>
<td>64.8</td>
<td>40</td>
</tr>
<tr>
<td>Prior HF</td>
<td>10</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Comparator</td>
<td>Placebo</td>
<td>Placebo</td>
<td>Placebo</td>
</tr>
</tbody>
</table>
Empagliflozin, canagliflozin and dapagliflozin reduce the combined endpoint of heart failure hospitalisation and CV death.
Reduction of heart failure hospitalisation by SGLT2 inhibitors

EMPA-REG Outcome

HR 0.65
(95%CI 0.50-0.85)
p=0.0017

Canvas Program

HR 0.67
(95%CI 0.52-0.87)

Reduction of heart failure hospitalisation by SGLT2 inhibitors

DECLARE

Empagliflozin, canagliflozin and dapagliflozin reduce heart failure hospitalisation
EMPA-REG OUTCOME

3P-MACE and single endpoints

<table>
<thead>
<tr>
<th>Event</th>
<th>Patients with event/analysed</th>
<th>HR</th>
<th>(95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-point MACE</td>
<td>490/4687</td>
<td>0.86</td>
<td>(0.74, 0.99)*</td>
<td>0.0382</td>
</tr>
<tr>
<td>CV death</td>
<td>172/4687</td>
<td>0.62</td>
<td>(0.49, 0.77)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Non-fatal MI</td>
<td>213/4687</td>
<td>0.87</td>
<td>(0.70, 1.09)</td>
<td>0.2189</td>
</tr>
<tr>
<td>Non-fatal stroke</td>
<td>150/4687</td>
<td>1.24</td>
<td>(0.92, 1.67)</td>
<td>0.1638</td>
</tr>
</tbody>
</table>

Cox regression analysis. MACE, Major Adverse Cardiovascular Event; HR, hazard ratio; CV, cardiovascular; MI, myocardial infarction *95.02% CI
CANVAS Program

3P-MACE and single endpoints

<table>
<thead>
<tr>
<th>Event</th>
<th>Patients with event/analysed</th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3P-MACE</td>
<td>Canagliflozin: 585/5795, Placebo: 426/4347</td>
<td>0.86 (0.75, 0.97)</td>
<td><0.001 (non-inferiority) 0.02 (superiority)</td>
</tr>
<tr>
<td>CV death</td>
<td>Canagliflozin: 268/5795, Placebo: 185/4347</td>
<td>0.87 (0.72, 1.06)</td>
<td>NR*</td>
</tr>
<tr>
<td>Non-fatal MI</td>
<td>Canagliflozin: 215/5795, Placebo: 159/4347</td>
<td>0.85 (0.69, 1.05)</td>
<td>NR*</td>
</tr>
<tr>
<td>Non-fatal stroke</td>
<td>Canagliflozin: 158/5795, Placebo: 116/4347</td>
<td>0.90 (0.71, 1.15)</td>
<td>NR*</td>
</tr>
</tbody>
</table>

Favours canagliflozin | Favours placebo

NR indicates not reported.
Empagliflozin but not canagliflozin or dapagliflozin reduce CV death in the respective outcome trials.
Heart Failure: The next frontier for SGLT2 inhibitors?

- Heart failure in diabetes
- SGLT2 inhibition and heart failure
 - Data from CVOTs
 - Patients with or without HF at baseline
 - Time course of risk reduction
 - Patients with or without HFrEF
- Effects of SGLT2 inhibitors in subjects without diabetes
Empagliflozin, canagliflozin, and dapagliflozin reduce heart failure hospitalisation and CV death in patients with or without heart failure at baseline.
Heart Failure: The next frontier for SGLT2 inhibitors?

• Heart failure in diabetes

• SGLT2 inhibition and heart failure
 – Data from CVOTs
 – Patients with or without HF at baseline
 – Time course of risk reduction
 – Patients with or without HFrEF

• Effects of SGLT2 inhibitors in subjects without diabetes
Reduction in CV mortality was immediate, with benefit sustained throughout the trial.

EMPA-REG Outcome

Hazard ratio over time

<table>
<thead>
<tr>
<th>HR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.62</td>
<td>(0.49, 0.77)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Placebo | Empagliflozin

- **HR 0.62** (95% CI 0.49, 0.77); p<0.0001
- Hazard ratio over time favours empagliflozin.
Reduced risk of HHF was observed early and sustained throughout the trial

EMPA-REG Outcome

Hazard ratio over time

<table>
<thead>
<tr>
<th>Placebo</th>
<th>Empagliflozin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard ratio</td>
<td>0.65</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>0.50, 0.85</td>
</tr>
<tr>
<td>p</td>
<td>0.0017*</td>
</tr>
</tbody>
</table>

No. of patients:
- Empagliflozin: 4687, 4614, 4523, 4427, 3988, 2950, 2487, 1634, 395
- Placebo: 2333, 2271, 2226, 2173, 1932, 1424, 1292, 775, 168

Censoring relative to randomisation (days):
- Placebo better
- Empagliflozin better
Heart Failure: The next frontier for SGLT2 inhibitors?

• Heart failure in diabetes

• SGLT2 inhibition and heart failure
 – Data from CVOTs
 – Patients with or without HF at baseline
 – Time course of risk reduction
 – Patients with or without HFrEF

• Effects of SGLT2 inhibitors in subjects without diabetes
Prespecified analysis planned to examine the clinical benefit of dapagliflozin in patients with and without HFrEF

DECLARE-TIMI-58
N=17,160

HFrEF
EF <45%, N=671

Not HFrEF
N=16,489

History of HF

No History of HF

HF without known rEF
- EF≥45%, N=808
- EF unknown, N=508
N=1,316

No HF
N=15,173

1EF available in 5202 pts

Kato et al; Circulation 2019 online
Combination of CV death / HHF (by HFrEF vs not HFrEF subgroups)

<table>
<thead>
<tr>
<th>Group</th>
<th>HR (95% CI)</th>
<th>P for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFrEF</td>
<td>0.62 (0.45; 0.86)</td>
<td>0.046</td>
</tr>
<tr>
<td>Not HFrEF</td>
<td>0.88 (0.76; 1.02)</td>
<td></td>
</tr>
</tbody>
</table>

Not HFrEF defined as pts with HF without known reduced EF and pts without hx of HF
- Treatment with dapagliflozin resulted in a lower rate of HHF vs placebo in a broad spectrum of patients including those with preserved EF.
- Dapagliflozin reduced CV death in patients with HFrEF, but not in those without HFrEF.
Heart Failure:
The next frontier for SGLT2 inhibitors?

• Heart failure in diabetes

• SGLT2 inhibition and heart failure

• Effects of SGLT2 inhibitors in subjects without diabetes
Patients with heart failure have similar pathophysiological features as patients with diabetes

<table>
<thead>
<tr>
<th>Heart failure</th>
<th>Shared pathological features</th>
<th>Diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impaired contractility</td>
<td>Endothelial dysfunction</td>
<td>Hyperglycaemia</td>
</tr>
<tr>
<td>Cardiomyocyte apoptosis/fibrosis</td>
<td>Insulin resistance</td>
<td>↓ Pancreatic beta-cell function</td>
</tr>
<tr>
<td>Neurohormonal activation</td>
<td>Mitochondrial dysfunction</td>
<td>Advanced glycated end-product toxicity</td>
</tr>
<tr>
<td>LV remodelling</td>
<td>RAAS activation</td>
<td>Neuronal degeneration/demyelination</td>
</tr>
<tr>
<td></td>
<td>Inflammation</td>
<td></td>
</tr>
</tbody>
</table>

LV, left ventricular; RAAS, renin-angiotensin-aldosterone system
Empagliflozin-induced glucosuria occurs in diabetes and non-diabetes

Glucose excreted within 24 hours after single dose

- In EMPA-REG OUTCOME, the reduction in CV outcomes was consistent between 10 mg and 25 mg doses of empagliflozin.
- A difference in the magnitude of glucosuria seen between 10 mg and 25 mg doses (and diabetes vs non-diabetes) may be unlikely to impact the risk of CV outcomes with empagliflozin.

Therefore, any potential association between empagliflozin-induced glucosuria and CV risk reduction may also be seen in T2D and non-diabetes.

Transient urinary sodium excretion with empagliflozin is observed in non-diabetes and in patients with T2D.

Therefore, any potential association between empagliflozin-induced natriuresis and CV risk reduction may also be seen in non-diabetes.

*p<0.01 versus baseline; †Baseline defined as mean of four 24-hour urine collections
Rationale for exploring empagliflozin for the treatment of heart failure in patients without diabetes

Patients with HF have similar pathophysiological features as patients with diabetes\(^1,2\)

Glucosuria, natriuresis and metabolic effects of empagliflozin are seen in patients with and without diabetes\(^3-5\)

The CV benefits observed in EMPA-REG OUTCOME were largely independent of glucose levels\(^6\)

Hypothesis: Patients with HF without diabetes may benefit from empagliflozin

There is mechanistic rationale to investigate the CV outcomes of empagliflozin beyond T2D

HF, heart failure
• **Aim:** evaluate efficacy and safety of once-daily empagliflozin 10 mg compared to placebo, in patients with chronic heart failure with preserved ejection fraction or reduced ejection fraction

• EMPEROR HF-Preserved [NCT03057951]: n~4,100

• EMPEROR HF-Reduced [NCT03057977]: n~2,800

Patients with and without diabetes included

Follow-up: Event-driven (estimated end 2020)

Primary endpoint: CV death or adjudicated hospitalisation for heart failure
Randomised controlled trials of SGLT2 inhibitors in HF beyond diabetes

<table>
<thead>
<tr>
<th></th>
<th>EMPEROR-Preserved(^1)</th>
<th>EMPEROR-Reduced(^2)</th>
<th>Dapa-HF(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>4126</td>
<td>2850*</td>
<td>4500</td>
</tr>
</tbody>
</table>
| **Key inclusion criteria** | • Patients with chronic HF\(^\dagger\)
• Elevated NT-proBNP
• eGFR ≥20 ml/min/1.73 m\(^2\) | • Symptomatic HFrEF\(^\dagger\)
• Elevated NT-proBNP
• eGFR ≥30 ml/min/1.73 m\(^2\) | |
| **Primary endpoint** | • Time to first event of adjudicated CV death or adjudicated HHF | • Time to first occurrence of CV death, HHF or urgent HF visit | |
| **Key secondary endpoints** | • Individual components of primary endpoint
• All-cause mortality
• All-cause hospitalisation
• Time to first occurrence of sustained reduction of eGFR
• Change from baseline in KCCQ | • Total number of HHF or CV death
• All-cause mortality
• Composite of ≥50% sustained eGFR decline ESRD or renal death
• Change from baseline in KCCQ | |
| **Start date** | March 2017 | March 2017 | February 2017 |
| **Expected completion date** | June 2020 | June 2020 | December 2019 |

\(^*\)NT-proBNP-based enrichment of the population with patients at higher severity of HF; \(^\dagger\)NYHA class II–IV
eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; HF, heart failure; HHF, hospitalisation for heart failure; KCCQ, Kansas City Cardiomyopathy Questionnaire; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro–B-type natriuretic peptide; SGLT2, sodium-glucose co-transporter-2

Heart Failure: The next frontier for SGLT2 inhibitors?

- Patients with **diabetes** exhibit a **high risk** to develop **heart failure**
- SGLT2 inhibitors reduce **HF hospitalisation** in patients with and without HF / ASCVD
- Some of the effects of **SGLT2 inhibitors** are **independent of the presence of diabetes**
- Ongoing studies will show whether **SGLT2 inhibitors** may become a **therapeutic tool** in HF patients without diabetes