

Lp (a) apheresis and CVD risk (modulation)

Dr. Elisa Waldmann

Department of Internal Medicine IV
Endocrinology and Metabolism
Campus Großhadern
Ludwig-Maximilians-University, Munich

Department of Internal Medicine IV

Confict of Interest Disclosure

EW has received honoraria for presentations, advisory board activities or DMC acitivities by Alexion, Amgen, Boehringer-Ingelheim, Genzyme and Sanofi.

EW has received research support by Alexion, Amgen, Genzyme, Novartis and Sanofi.

Department of Internal Medicine IV

General Facts

- Apheresis is an extracorporal procedure to remove lipoproteins from the plasma of patients
- Veno-venous
- 1,5-3h weekly or biweekly
- app 1000€/ apheresis
- There are different methods how lipoproteins can be removed

Department of Internal Medicine IV

HELP: Heparin-induced extracorporal precipitation precipitation of a complex consisting of heparin, LDL, lipoprotein(a), fibrinogen and CRP at ph 5.12

Immuno-adsorption: Anti-apoB100 antibodies plasma is passend through columns containing polyclonal anti-apoB100 antibodies

Dextransulfate: electrostatic binding electrostatic interaction of negatively charged dextransulfate and positively charged apoB

Lipidfiltration/ membrane differential filtration series of filters eliminate LDL and lipoprotein(a) from plasma based on size properties

DALI: direct adsorption of lipoproteins electrostatic interaction of negatively charged polyacrylate anions with positively charged apoB

Lipopac: Anti-apoprotein(a) antibodies plasma is passed through columns containing polyclonal anti-apo(a) antibodies

Department of Internal Medicine IV

Effects on lipoporteins

Acute reductions in plasma lipoproteins in studies comparing different methods of LDL apheresis: immunoadsorption (IMA), dextran sulphate adsorption (DSA), HELP and DALI

Author (Ref.)	Patients (n)	Procedure (n)	Volume treated, l	LDL-C (%)	Δ% Lp(a)	HDL-C (%)
Knisel [27]	FH (5)	IMA (690)	5.7	60	-63	-22
	(3)	DSA (243)	4.8	-57	-	-8
Schaumann [28]	FH (7) ^a	IMA (14)	4.5	69	_	-27
		DSA (14)	4.3	~75	-	-11
		HELP(14)	3.0	-60	-	-5
Richter [29]	FH (18)	IMA (3499)	_	62	-51	-15
	(8)	DSA (579)	-	65	-49	-17
	(8)	HELP (1497)	-	- 59	-68	-17
Schmaldienst [30]	FH (8) ^a	IMA (32)	6.0	-82	-63	-23
		DSA (32)	5.1	84	63	-10
		DALI (32)	7.1 ^b	-77	-63	-13
Parhofer [31]	HC (10) ^c	IMA (100)	3.8	64	64	-14
	(8)	DSA (80)	3.1	-65	-61	9
	(7)	HELP (70)	2.7	67	62	15

a Crossover study.

b Blood. All other volumes refer to plasma.

^c Refractory hypercholesterolaemia.

Department of Internal Medicine IV

Rebound curve

Department of Internal Medicine IV

Rebound after apheresis

Department of Internal Medicine IV

Elimination of ApoB Containing Lipoproteins

Department of Internal Medicine IV

Pro (a) Life

Department of Internal Medicine IV

German lipoprotein apheresis registry (GLAR)

Department of Internal Medicine IV

Similar Analysis with Data of "45"

(n=4444; CAD; simvastatin vs. placebo; 5.4 years; event rates 22.6% (placebo) vs 15.9% (simvastatin))

Department of Internal Medicine IV

Effect of Lp(a) apheresis

Department of Internal Medicine IV

Effect of Lp(a) apheresis

Lipoprotein(a)

LDL-C			Baseline	
mmol/L 3,0 _]	-□-Atorvastatin	Lp(a) apheresis	Mean	1.39 ± 0.63
	T THE TRACE	z zp(a) apirorosis	Median (95% CI)	1.30 (0.99–1.63)
2,6 -	2,5	-	18-month	
2,3		i _{2,2} 2,2	Mean	1.59 ± 0.54
2,2		Q <u>z.z</u>	Median (95% CI)	1.56 (1.34–1.73)
1,8 -	[2,1	2,0	Mean change from baseling	ne 0.20 ± 0.39
1,4		P=0.38	Median change from base	line 0.17 (0.03–0.36)
	mo 9	mo 18 m	o 0 1	mo 9mo

	QCA parameters	Lp(a) apheresis	Atorvastatin	
	Number of coronary segments	42 segments	50 segments	<i>p</i> Value
	Percent diameter stenosis, %			
	Baseline			_
	Mean	44.31 ± 15.95	43.68 ± 13.46	0.95
	Median (95% CI)	40.00 (37.29–47.00)	43.50 (39.86–47.51)	
	18-month			_
	Mean	39.26 ± 13.61	48.72 ± 14.77	0.001
	Median (95% CI)	36.50 (32.00–43.35)	49.00 (40.07–52.93)	
	Mean change from baseline	-5.05 ± 12.38	5.04 ± 11.43	0.0004
	Median change from baseline	-2.00 (-5.00-0.00)	3.50 (0.00–6.93)	
	Number with regression, n (%)	18 (43)	10 (20)	0.02*
10	Minimal lumen diameter, mm			
	Baseline			_
	Mean	1.39 ± 0.63	1.44 ± 0.50	0.52
	Median (95% CI)	1.30 (0.99–1.63)	1.40 (1.17–1.64)	
	18-month			_
	Mean	1.59 ± 0.54	1.45 ± 0.65	0.08
	Median (95% CI)	1.56 (1.34–1.73)	1.26 (1.16–1.58)	

0.05 (-0.05-0.17)

0.04

 0.01 ± 0.34

18 mo

Safarova et al Atherosclerosis Supplements 30 (2017) 166e173

Department of Internal Medicine IV

Multiselect trial

Matching criteria.

- 1. Identical sex
- 2. Age \pm 3 years
- 3. Identical ethnicity
- 4. Both subjects on or off PCSK9 inhibitor therapy
- 5. Both subjects with LDL-C in the same range of
- Either between 2.6 mmol/L (100 mg/dL) and 3.39 mmol/L (129 mg/dL)
- Or below 2.6 mmol/L (100 mg/dL)

Conclusion

- Lp(a) is a respected cardiovascular risk factor
- Lipoprotein apheresis reduces Lp(a) effectively
- Prospective, not controlled data shows positive effect of apheresis
- Plaqueregression through Lp(a) apheresis
- Matched (controlled) data is in progress ...