Practical experience and model for optimizing RAASi-based therapy

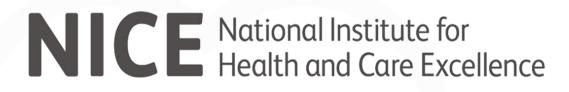
Aaron Wong, MD Bridgend, Wales, United Kingdom

Breaking barriers in guideline-based RAASi therapy: Solving issues with hyperkalemia

Breaking barriers in guideline-based RAASi therapy Solving issues with hyperkalemia

Practical Experience and Model for Optimizing RAASi-Based Therapy

Dr Aaron Wong


MBChB (Glasgow), MD (Dundee), FRCP (London), CAS (Zurich) Honorary Lecturer, University of Cardiff Consultant Cardiologist and General Physician Princess of Wales Hospital, Bridgend, Wales, United Kingdom

Speaker disclosures

Dr Aaron Wong

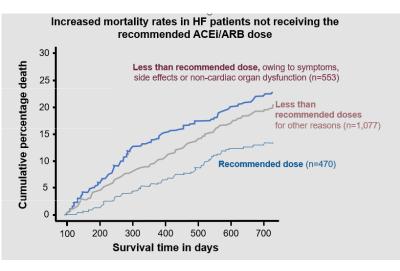
- Received funding for education and attends courses from Servier, Novartis, Menarini, Pharmacosmos, NAPP
- Principal Investigator for TRANSITION-HF, IRONMAN, RelieHF, DAPA-MI, VICTOR-HF, Realize K trials
- Received speaker's fees and consultation fees from Novartis, AstraZeneca, Pharmacosmos, Menarini, Boehringer Ingelheim, Lilly, Bayer and Roche

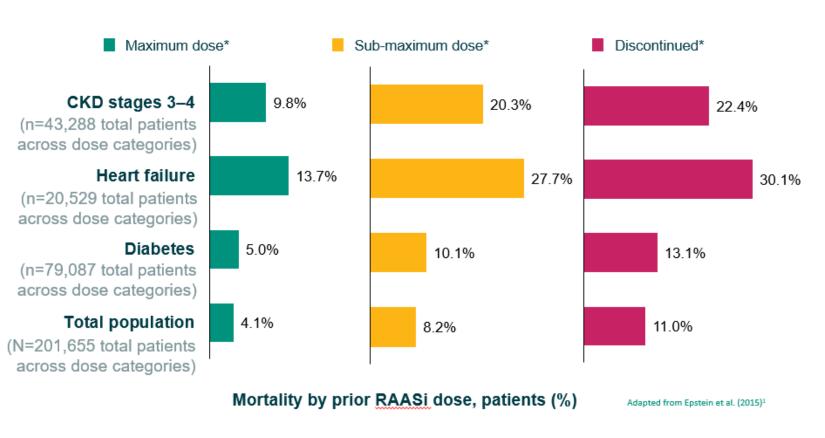
RAASI therapy is recommended by multiple organisations for the treatment of HF, CKD and T2DM

European Society of Cardiology

1. Yancy CW, et al. Circulation 2013;128:1810–52; 2. Ponikowski P, et al. Eur Heart J. 2016;37:2129–200; 3. Lindenfeld J, et al. J Card Fail. 2010;16:475–539; 4. National Institute for Health and Care

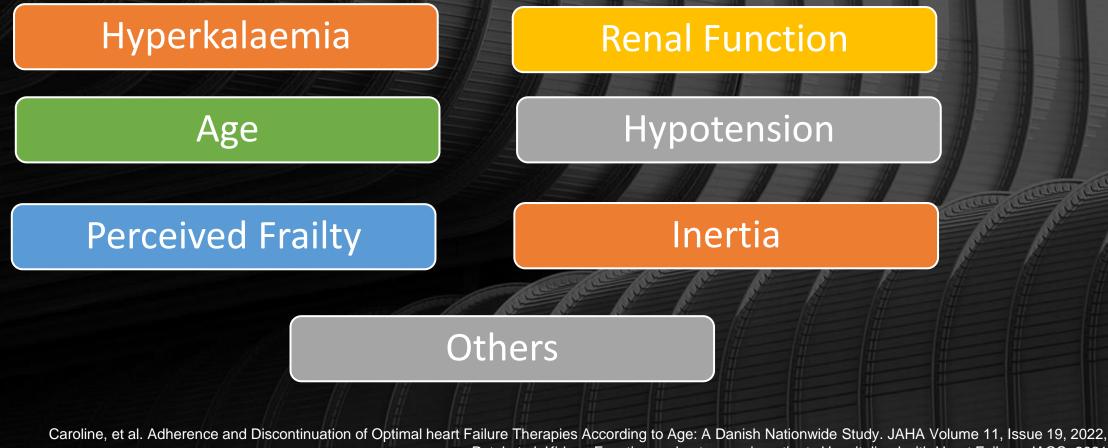
Excellence. Chronic heart failure in adults: diagnosis and management. 2018. Available at: http://www.nice.org.uk/guidance/ng106/ (accessed April 2020).


HEART FAILURE ASSOCIATION OF THE ESC


2021 ESC Guidelines, McDonagh TA, et al. Eur Heart J 2021;42:3599–3726

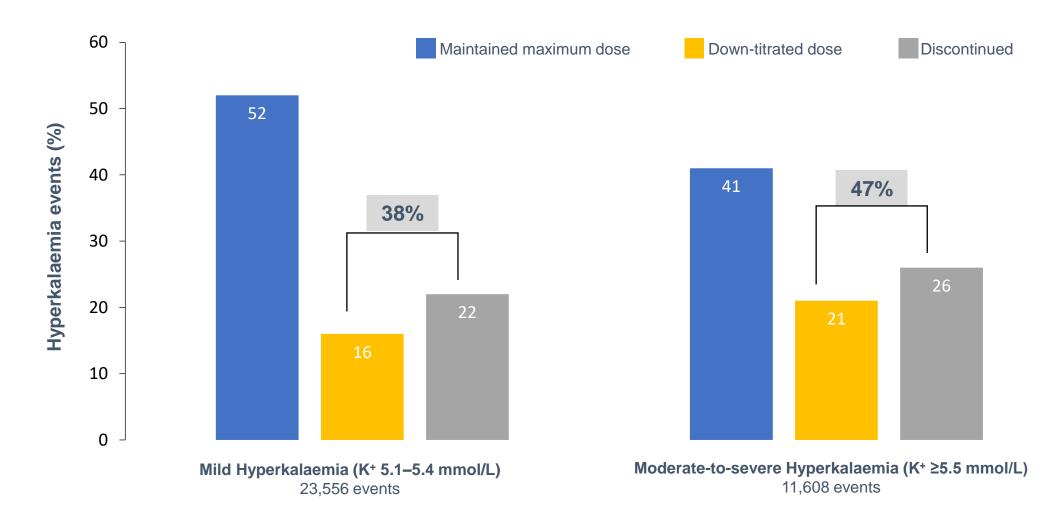
Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. Kidney Int 2020;98(4S):S1–S115; 2. American Diabetes Association. Diabetes Care 2022;45:S144–S174

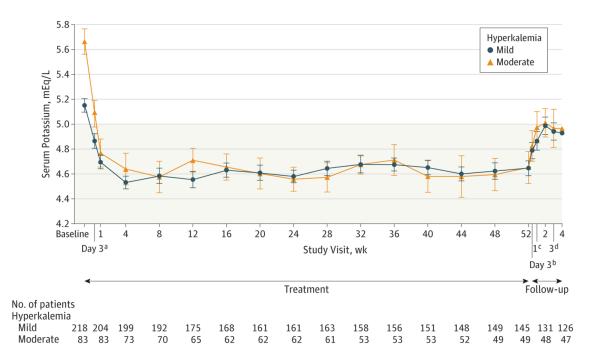
Sub-maximal dosing and discontinuation of RAASi are associated with poor patients outcomes



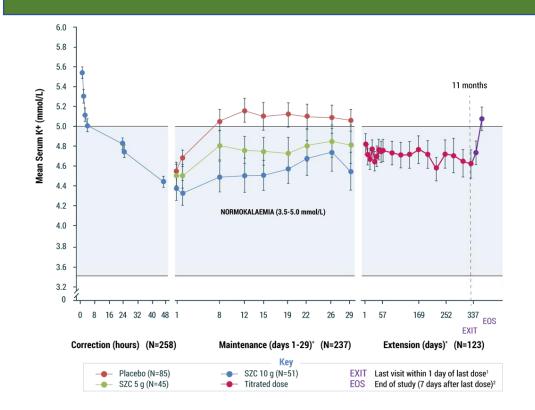
Epstein M, et al. Am J Manag Care. 2015;21:212–20.

Ouwerkerk W, et al. BIOSTAT-CHF. Eur Heart J.2017;38:1883-90.


ACEi (Angiotensin-covering enzyme inhibitor); ARB (Angiotensin-receptor blocker); ARNI (Angiotensin receptor-neprilysin inhibitor; MRA (Mineralocorticoid receptor antagonist)


Patel et al. Kidney Function and outcomes in patients Hospitalised with Heart Failure. JACC, 2021 Smith et al. Evaluation of the Usage and Dosing of GDMT for HFrEF in Clinical Practice. Journal of Pharmacy Practice. Vol 35, Issue 5, 2022

Down-titration Or Discontinuation Of RAASi Therapy Is Common Following A Hyperkalaemic Event ¹



Two Novel Potassium Binders

Patiromer

Sodium Zirconium Cyclosilicate

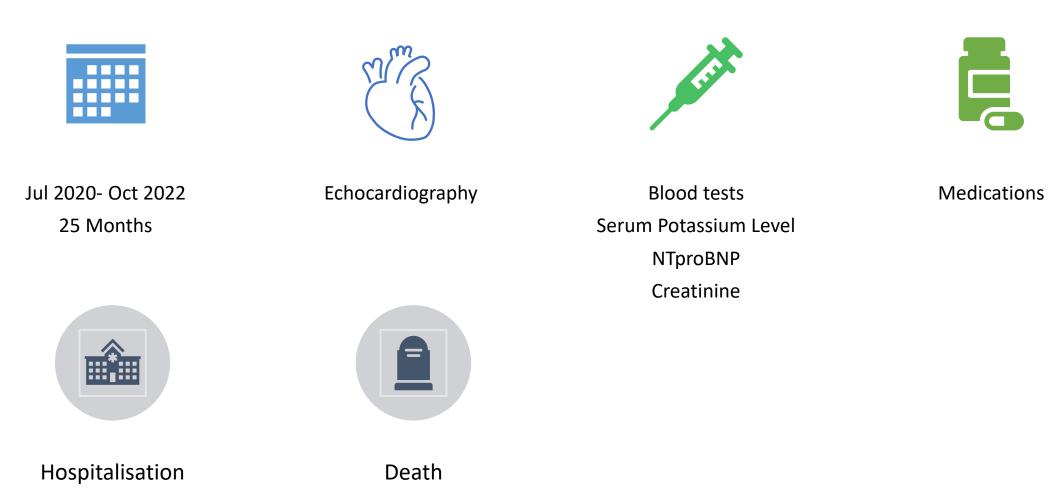
Bakris GL et al. JAMA 2015;314(2):151-61

Use of sodium zirconium cyclosilicate for up-titration of renin-angiotensin-aldosterone system inhibitor therapy in patients with heart failure: real world data

Rhys Williams¹, Alexander James¹, Rhian Donald¹, Kerys Thomas², Aaron Wong¹.

¹Cardiology Department, Princess of Wales Hospital, Coity Road, Bridgend, Wales, CF31 1RQ. UK.

Cwm Taf Morgannwg University Health Board.


²Pharmacy Department, Neath Port Tablot Hospital, Baglan Way, Port Talbot, Wales, SA12 7BX. UK.

Swansea Bay University Health Board.

Unpublished Data

Methods

HFrEF Patients on SZC

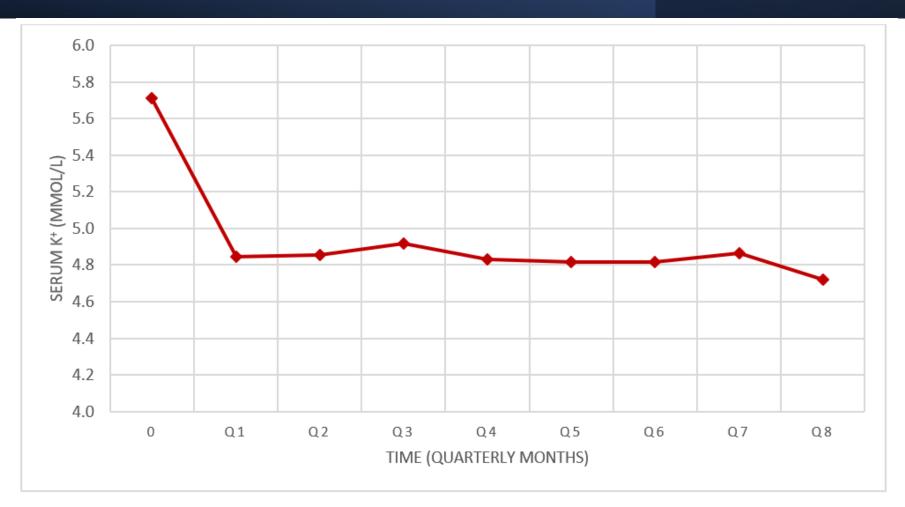
Baseline (Prior to initiation of SZC)

44patients Mean Age 75 years old 27% Female 75% CKD Stage 3b or 4 38% Diabetes 55% IHD 61% Hypertension 50% AF 10% CRT/ICD

Mean Baseline LVEF 29% NYHA II-III (86%)

30% had HHF hospitalisation in the preceding 24 months

Baseline NTproBNP 3458 ng/L sK⁺ 5.7mmol/L Creatinine clearance 48mL/min


32% on Quadruple Therapy 89% ACEi/ARNi 52% MRA 66% SGLT2i 80% Beta Blockers

Increased Uptake and dosing of Guidelines Recommended therapy

	n=44		Pre-SZC		Post-SZC	
ACEi/ARB/ARNI		ACEi	7%		0%	
	% patients prescribed	ARB	0%	90%	0%	100%
		ARNI	82%		100%	
	% guideline recommended dose		50%		73	3%
MRA	% patients prescribed		52%		89%	
	% guideline recommended dose		48%		66%	
Loop Diuretics	% patients on loop diuretic therapy		30%		25%	
	% of patients with maintenance / reduction	on of loop			70	0/
	diuretics		-		79%	
HFrEF	% patients on ' <u>Quadruple</u> therapy' (ACEi/ARB/ARNI +		22	0/		0/
Treatments	BB + MRA + SGLT2i)		32	.70	04	%
	patients on ' <u>Triple</u> therapy' (ACEi/ARB/ARNI +/- BB 68%		0.1	0/		
	+/- MRA +/- SGLT2i)		68	5%	91	.%
Dosing of SZC	% of patients receiving 10g once daily dosing			-	50)%

ACEi (Angiotensin-covering enzyme inhibitor); ARB (Angiotensin-receptor blocker); ARNI (Angiotensin receptor-neprilysin inhibitor); BB (beta blocker); dHF (Decompensation of heart failure); HFrEF (Heart failure with reduced ejection fraction); LVEF (Left ventricular ejection fraction); MRA (Mineralocorticoid receptor antagonist); NT-proBNP (N-terminal pro B-type natriuretic peptide); SEs (Side effects); SGLT2i (sodium-glucose co-transporter 2 inhibitor); SZC (sodium zirconium cyclosilicate)

Maintain Normal Serum Potassium level

K+, potassium; SZC, sodium zirconium cyclosilicate

Reduction in Serum Potassium levels following SZC initiation up to 24 months

Improvement in HF Markers and Clinical outcome

	N=44	Pre-SZC	Post-SZC
Heart Failure Markers	LVEF (%)	29%	36%
	Median NT-proBNP (ng/L)	3458ng/L	2055ng/L
	% of patients with reduction of NTproBNP (n=33)	-	79%
	% of patients with reduction of NTproBNP > 800ng/L (n=33)	-	67%
Observations / Biochemical	Mean Creatinine Clearance (mL/min)	49	50
	Mean Blood Pressure (mmHg)	124/70	122/71
Hospitalisation / Mortality	% patients requiring hospitalisation for hyperkalaemia	14%	7%
	% patients requiring hospitalisation for dHF	30%	11%
	% Survival	-	91%
Tolerability	% of patients discontinued on SZC due to SEs	-	3%

ACEi (Angiotensin-covering enzyme inhibitor); ARB (Angiotensin-receptor blocker); ARNI (Angiotensin receptor-neprilysin inhibitor); BB (beta blocker); dHF (Decompensation of heart failure); HFrEF (Heart failure with reduced ejection fraction); LVEF (Left ventricular ejection fraction); MRA (Mineralocorticoid receptor antagonist); NT-proBNP (N-terminal pro B-type natriuretic peptide); SEs (Side effects); SGLT2i (sodium-glucose co-transporter 2 inhibitor); SZC (sodium zirconium cyclosilicate)

Practical guidance for the prescribing and monitoring of Sodium Zirconium Cyclosilicate to allow initiation / maintenance of Heart Failure therapies in Primary Care

Table 1: SZC (Lokelma®) dose adjustment table and monitoring frequency

This table is intended for management of SZC in patients who are clinically well with no acute illness / acute renal injury.

Serum K ⁺	SZC 5mg alternate days	SZC 5g OD	SZC 10g OD	SZC 15g OD (Unlicensed)*
< 3.0 mmol/L	Withhold SZC. Review patient (identify cause) +/- treat hypokalaemia. Discuss with Heart Failure / Renal specialists if required.			
3.0 – 3.4 mmol/L	Discontinue	Reduce to 5g alt days	Reduce to 5g OD	Reduce to 10g OD
3.5 – 3.9 mmol/L	Consider optimisation of RAASi therapies (see table 2) Consider dose reduction of SZC.			
4.0 – 4.9 mmol/L	No change			
5.0 – 5.4 mmol/L	Consider increase to 5g OD Consider increase to 10g OD Consider increase to 15g OD* Discuss with HF / Renal tea No change			Discuss with HF / Renal team
5.5 – 5.9 mmol/L	Increase to 5g OD	Increase to 10g OD	Increase to 15g OD*	Patient Assessment. Consider down-titration of BAASI
> 6.0mmol/L	Follow local guidance for management of hyperkalaemia.			

Adapted from Spinowitz et al. Sodium Zirconium Cyclosilicate among individuals with Hyperkalaemia: A 12-month phase 3 study. Clin J Am Soc Nephrol. 2019 Jun 7;14(6):798-809.

*15g is an unlicensed dosage and patient should have regular review with their heart failure / renal team.

	U&E Monitoring	Within 1-3 days	Within 1 week	Within 2 weeks	Monthly	Every 2 months
--	----------------	-----------------	---------------	----------------	---------	----------------

	Hypokalaemia	Hyperkalaemia
Worsening HF symptoms	Consider further optimisation of RAASi if able. Review other possible causes for \downarrow st.	Increase SZC as per table 1 to maintain existing RAASI therapy.
Fluid Overloaded	Decrease / withhold SZC as per <i>table 1</i> . Review diuretic therapies.	Review diuretic therapies (Diuretics will $\downarrow s_{\lambda}^{(*)}$) Increase SZC as per <i>table 1</i> to maintain existing <u>RAASI</u> therapy.
Hypertension / Normotensive	Consider further optimisation of BAASI if able.	Increase SZC as per table 1 to maintain existing RAASI therapy.
Hypotension	Decrease / withhold SZC as per table 1. Assess symptom burden & review medications.	Increase SZC as per table 1 to maintain existing RASI therapy. Assess symptom burden & review medications.
Worsening Renal Function	Decrease / withhold SZC as per <i>table 1</i> . See <i>table 3</i> . Review fluid status and diuretic therapy.	Increase SZC as per table 1 +/- reduce RAASi therapy (table 3)
Medications	Review medications that may \downarrow st.	Review medications that may \uparrow §§*.

Adapted from Clark AL et al. Changes in renal function associated with drug treatment in heart failure: national guidance. Heart. 2019;105:904-9

Table 3: Recommendations for RAASi dosing in response to change in renal function

Clinical assessment of the patient (to assess fluid status, consider baseline renal function and BP) and review of their medication is imperative

	Heart Failure with PRESERVED Ejection Fraction (HEDEE)	Heart Failure with REDUCED Ejection Fraction (HFrEE)
Increase in serum creatinine by < 30%	Consider stop ACEI/ARB/ARNI. Review MRA according to fluid status	Continue unless symptomatic hypotension
Increase in serum creatinine 30 – 50%		Consider reducing dose / temporary withdrawal*
Increase in serum creatinine > 50%	Stop RAAS inhibitor	Temporarily stop RAAS inhibitor*
Severe renal dysfunction (eGFR < 20)		Stop RAAS inhibitor if symptomatic uraemia irrespective of baseline function

*reinitiate and/or re-titrate when renal function improved.

Conclusions

- RAASi is the cornerstone for the treatment of HF
- These evidence based medications can improve outcome and dosing is important
- Hyperkalaemia can be a barrier to optimise RAASi therapy
- Selective use of potassium binder can allow optimisation of guideline recommended medications
- Real World Evidence: Potassium binder SZC was well tolerated, effective in maintaining normokalaemia to enable optimisation of RAASi therapy during the study period with improvements in NT-proBNP levels and LVEF
- The applicability of this real-world experience of potassium-binder use will be further expanded upon with the outcomes of randomised clinical trials such as REALIZE-K.