IMPERIAL

The Remaining **Challenges in Lowering** LDL-C in **Patients at Increased CV** Risk

Prof. Kausik K Ray, FMedSci

- President European Atherosclerosis Society
- NIHR ARC National Lead for CVD
- Professor of Public Health and Consultant Cardiologist
- Director of the Imperial Centre for Cardiovascular Disease Prevention
- Director of the Imperial Clinical Trials Unit-Global, Imperial College London

Disclosures: KK Ray

Disclosure of speaker's interests							
Relations that could be relevant for the meeting:	Company names						
Sponsorship or research funds	 Amgen, Sanofi, Regeneron, MSD, Pfizer, Daiichi Sankvo, Ultragenix 						
Payment or other (financial) renumeration	 Consultancy: Amgen, Sanofi, Regeneron, Pfizer, Viatris, Abbott, AstraZeneca, Lilly, Kowa Pharmaceutics, Novo Nordisk, Boehringer Ingelheim, Esperion, Cargene Therapeutics, Resverlogix, Novartis, Silence Therapeutics, NewAmsterdam Pharma, Scribe Therapeutics, CRISPR Therapeutics, VAXXINITY, Amarin, CSL Behring, Bayer, Cleerly Health, Emendobio Stock Options PEMI31, SCRIBE, New Amsterdam Pharma 						

Atherosclerosis- results from the accumulation of cholesterol in the arterial wall throughout the life-course –genes, risk factors and time

FOAM CELLS	FATTY	INTERMEDIATE	ATHEROMA	FIBROUS PLAOUE	COMPLICATED	ESION/RUPTURE			
	STREAK	LESION					Age Group	Number of People (2020)	% of Global Population
	N.) -		a and		<20 years	2.6 billion	33.2%	
·].]-		10 10-10	8)/0/0	0			20-39 years	2.3 billion	29.9%
		-					—— 40-59 years	1.8 billion	23.1%
						60-79 years	918 million	11.8%	
					No. of Concession, name		80-99 years	147 million	1.9%
	Progressive Atherosclerosis					Heart Damage	100+ years	0.6 million	0.01%
Normal CR	P, LpPLA, & M	PO HI	gh CRP, LpPLA ₂ & I	Normal MPO	High CRP, LpPL	A2 & MPO			
Growth mainly by lipid accumulation					Smooth muscle and collagen	Thrombosis, hematoma			

Ray KK et al 2022 WHF Cholesterol Roadmap- Global Heart Journal DOI: https://doi.org/10.5334/gh.1154

Genetic vulnerability to risk factors (environment) means there is no such thing as normal levels of risk factors

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease

Amit V. Khera, M.D., Connor A. Emdin, D.Phil., Isabel Drake, Ph.D., Pradeep Natarajan, M.D., Alexander G. Bick, M.D., Ph.D., Nancy R. Cook, Ph.D., Daniel I. Chasman, Ph.D., Usman Baber, M.D., Roxana Mehran, M.D., Daniel J. Rader, M.D., Valentin Fuster, M.D., Ph.D., Eric Boerwinkle, Ph.D., Olle Melander, M.D., Ph.D., Marju Orho-Melander, Ph.D., Paul M Ridker, M.D., and Sekar Kathiresan, M.D.

This means most CV events will occur, in people without very high levels of risk factors - risk factors age 50s

The NEW ENGLAND JOURNAL of MEDICINE

Table 1. Characteristics of the Cohort Studies and Age- and Sex-Standardized Characteristics of the Participants at Baseline According to Geographic Region.*

ORIGINAL ARTICLE

Global Effect of Modifiable Risk Factors on Cardiovascular Disease and Mortality

The Global Cardiovascular Risk Consortium

Characteristic	Global	North America	Latin America	Western Europe	Eastern Europe and Russia	North Africa and the Middle East	Sub-Saharan Africa	Asia	Australia
Cohort studies									
Cohort studies — no.	112	11	10	58	16	5	2	4	6
Participants — no.	1,518,028	65,182	191,244	907,760	51,133	185,608	10,390	59,802	46,909
Range of survey years†	1963-2020	1971-2011	1990-2013	1970-2015	1983-2014	1963-2020	2011-2017	1988-2015	1983-2007
Participants									
Median age (IQR) — yr‡	54.4 (4.2–63.0)	54.0 (45.0–63.0)	54.0 (45.0–63.0)	54.6 (45.5–63.0)	54.1 (45.5–63.0)	54.0 (45.0–62.6)	54.0 (45.0–63.0)	54.0 (45.0–63.0)	54.6 (45.5–63.0)
Male sex — %‡	45.9	45.9	45.9	45.9	45.9	45.9	45.9	45.9	45.9
Median BMI (IQR)	26.4	27.2	28.2	26.1	27.2	27.0	21.0	22.8	26.4
Median SBP (IQR) — mm Hg	130.0 (118.0–144.0)	122.0 (111.0–136.0)	126.7 (118.0–138.7)	134.0 (122.0–148.0)	132.0 (120.0–148.0)	115.0 (105.0–130.0)	125.0 (113.0–140.0)	123.5 (112.0–136.0)	127.0 (116.5–139.0)
Median DBP (IQR) — mm Hg	80.0 (72.0–87.5)	74.0 (67.0–81.0)	82.7 (76.7–90.0)	81.0 (74.0–89.0)	82.0 (75.0–91.0)	75.0 (67.5–80.0)	75.0 (69.0–83.0)	76.0 (68.0–84.0)	72.5 (64.5–80.5)
Median non-HDL choles- terol (IQR) — mg/dl	156.9 (128.8–187.9)	150.0 (123.0–179.4)	156.2 (131.1–185.2)	162.8 (134.8–193.8)	162.4 (135.0–191.8)	140.1 (115.3–167.8)	116.0 (77.3–154.7)	140.0 (117.6–167.0)	151.2 (124.5–181.0)
Current smoking — %	21.6	22.5	30.8	20.9	29.2	14.2	18.6	23.5	14.3
Diabetes — %	8.3	13.0	15.3	4.8	9.0	18.3	2.0	5.1	4.8
Antihypertensive medica- tions — %	19.4	27.5	19.3	17.9	28.8	24.7	18.5	11.6	13.7
Lipid-lowering medica- tions — %	9.6	8.0	2.3	11.5	8.8	11.6	NA	4.4	4.1
History of CVD - %	5.6	7.2	3.6	5.6	11.2	5.6	0	6.3	7.2

Poor ability to predict risk - delays prevention and its optimisation (implementation)

75% of MIs were not on prior LLTs- age 62-64 (half had LDL-C between 2.3-3.8 at time of MI)

LDL-C at CR visits

(mmol/L)

Patients in quartile 1 appear to have more comorbidities, to be at higher risk of CV events and to have highest rates of prior statin treatment (58%).

Schubert, Jessica, et al. European heart journal 42.3 (2021): 243-252.

LLT remained the same, but LDL-C levels changed

1.9 (1.5-2.4)

1.9 (1.5-2.2)

1.8 (1.5-2.2)

2.3 (1.8-2.9)

Numerous targets have been explored to lower LDL-C, with several LLTs now available^{1,2}

C, chylomicron; CR, chylomicron remnant; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; IDL-C, intermediate-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; LDL-R, LDL receptor; LPL, lipoprotein lipase; LRP, LDL relation protein receptor; LTT, lipid-lowering therapy; NPC1L1, Niemann-Pick C1-like 1; PCSK9i, proprotein convertase subtilisin/kexin type 9 inhibitor; VDL-C, very low-density lipoprotein cholesterol

 Adapted from Ryan A, et al. BMJ. 2018;360:k946; 2. Pinkosky SL, et al. Nat Commun. 2016;7:13457; 3. NILEMDO[®]. Summary of Product Characteristics. Available at: <u>https://www.medicines.org.uk/emc/product/11743</u> (accessed July 2024); 4. NUSTENDI[®] Summary of Product Characteristics. Available at: https://www.medicines.org.uk/emc/product/11744 (accessed July 2024) Current approaches follow a step by step approach driven by LDL-C levels (response to previous step) – Problem is there a big difference between goal achievement and risk reduction

Byrne RA, et al. Eur Heart J. 2023;44(38):3720-3826.

LDL-C, low-density lipoprotein cholesterol; RRR, relative risk reduction.

IMPERIAL

ZODIAC Study

OptimiZation Of lipid lowering therapies using a Decision support system In patients with Acute Coronary syndrome (ZODIAC)

Sponsored by Imperial College London

ZODAC

<u>Clinical Trials.gov</u> <u>number</u>: NCT05844566

IMPERIAL

Cluster RCT in ACS Care Pathway

Planned Design

1584 participants across 3 countries.

48 sites randomised to:

- Standard of Care (SoC) [24 sites] or
- DSS [24 sites] across 3 countries

Each site needs to recruit 33 patients

Study Update

- Recruitment completed
- Currently in the follow-up phase

Usual Care Step by Step LLT up-titration vs availability of a Decision Support System (DSS) that allows the user (HCP) to quantify risk and benefits from combinations of LLT over time

How does it work?

The DSS helps clinicians visualise the combined projected risk of non-fatal MI, non-fatal ischemic stroke, and CV death in ASCVD associated with different treatment options for ACS patients (18-79) hospitalised in the last 72 hours.

An example of one of the four visualisation of risk and benefit when using the DSS.

Conclusion

- The destination is CV Risk Reduction
- The journey is through appropriate LDL-C lowering
- Problems are **poor perception of risk**, and understanding the **interplay between genes, environment and time**
- Approaches that better help us understand the **benefit** of treatment and not just **risk** might help to **tackle inertia and difficulties** with implementation