IMPERIAL

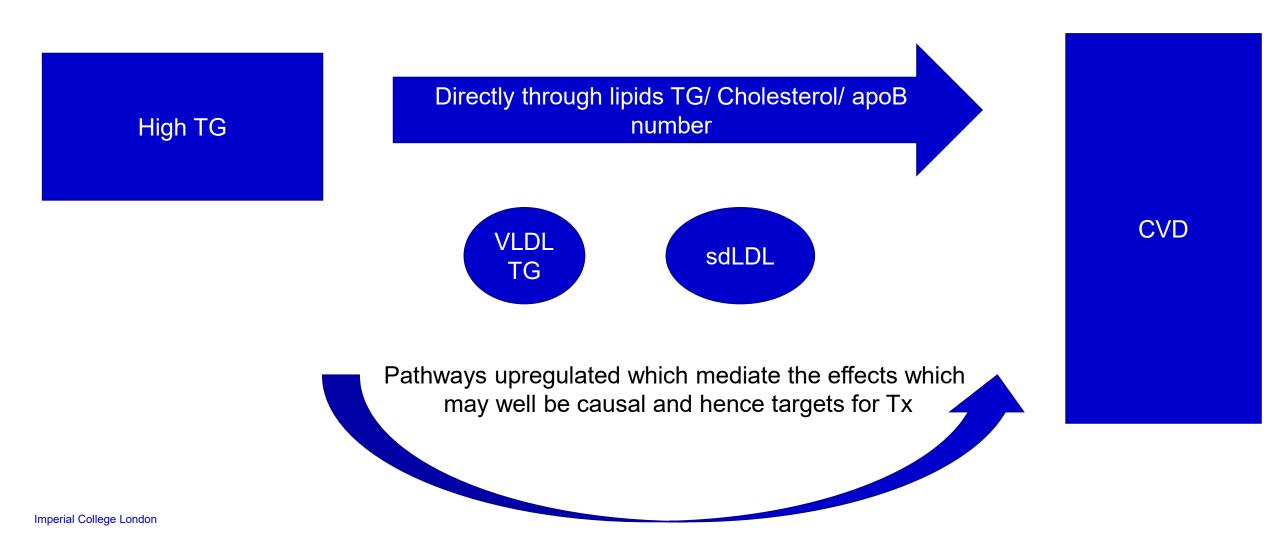
Managing a Patient with Residual Risk: **Applying recent** evidence with EPA to practice

Prof. Kausik K Ray, FMedSci

- President European Atherosclerosis Society
- NIHR ARC National Lead for CVD
- Professor of Public Health and Consultant Cardiologist
- Director of the Imperial Centre for Cardiovascular Disease Prevention
- Director of the Imperial Clinical Trials Unit-Global, Imperial College London

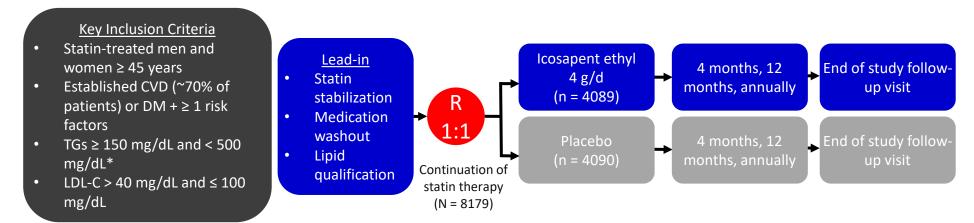
Disclosures: KK Ray

Disclosure of speaker's interests					
Relations that could be relevant for the meeting:	Company names				
 Sponsorship or research funds Payment or other (financial) renumeration 	 Amgen, Sanofi, Regeneron, MSD, Pfizer, Daiichi Sankyo, Ultragenix Consultancy: Amgen, Sanofi, Regeneron, Pfizer, Viatris, Abbott, AstraZeneca, Lilly, Kowa Pharmaceutics, Novo Nordisk, Boehringer Ingelheim, Esperion, Cargene Therapeutics, Resverlogix, Novartis, Silence Therapeutics, NewAmsterdam Pharma, Scribe Therapeutics, CRISPR Therapeutics, VAXXINITY, Amarin, CSL Behring, Bayer, Cleerly Health, Emendobio Stock Options PEMI31, SCRIBE, New Amsterdam Pharma 				

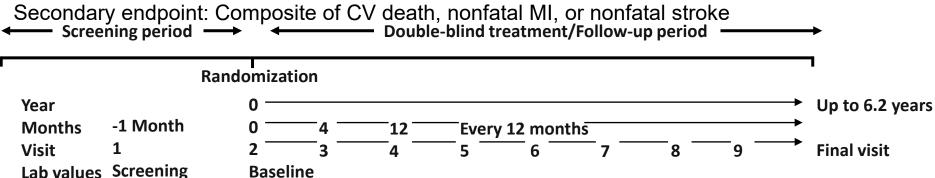

Copenhagen General Population Study - all apoB containing lipoproteins are likely causally linked to ASCVD

	n	Number of events	
LDL cholesterol: increase of 39 mg/dl (1	mmol/l)		
Observational	108,554	2,210	
Genetic (APOB, HMGCR, LDLR, PCSK9)	95,908	4,155	⊢
Remnant cholesterol: increase of 39 mg/	/dl (1 mmol,	/l)	
Observational	108,508	2,219	юн
Genetic (APOA5, GCKR, LPL, TRIB1)	97,745	4,199	
Lipoprotein(a) cholesterol: increase of 3	9 mg/dl (1 r	nmol/l)	
Observational	108,550	2,210	⊢ ●−−−1
Genetic (LPA)	103,715	4,425	⊢ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
		1	.0 1.5 2.0 2.5 3.0 3.5
			Hazard ratio or causal risk ratio for myocardial infarction (95% Cl)

Imperial College London


Nordestgaard, Nicholls, Langsted, Ray & Tybjærg-Hansen. Nat Rev Cardiol 2018 2018; 15: 261-272

Mendelian Randomization does not tell you which part of the TG related pathway you need to target ?



REDUCE-IT Study Design

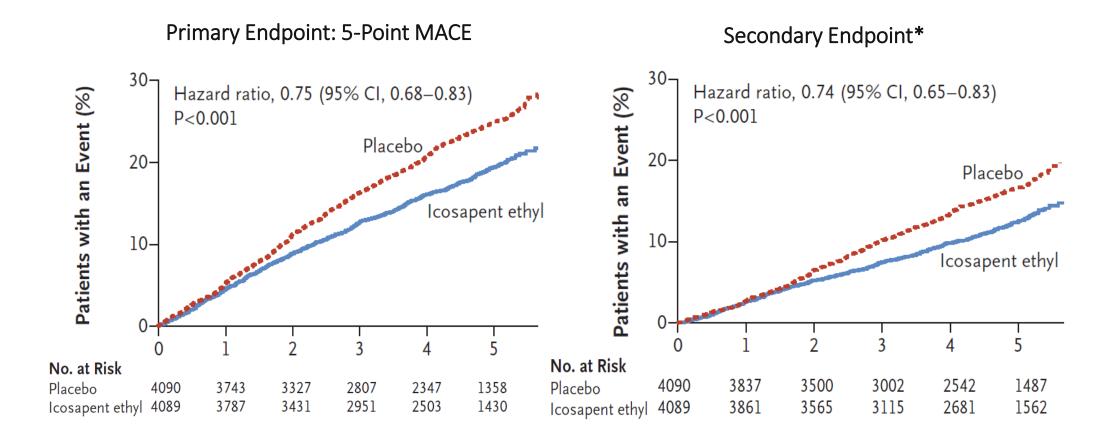
l,≡

<u>Primary endpoint</u>: Time from randomization to the first occurrence of composite of CV death, nonfatal MI, nonfatal stroke, coronary revascularization, unstable angina requiring hospitalizations

*Due to variability of TGs, a 10% allowance existed in the initial protocol, which permitted patients to be enrolled with qualifying TGs ≥ 135 mg/dL. Imperial College London
Protocol amendment 1 (May 2013) changed the lower limit of acceptable TGs from 150 mg/dL to 200 mg/dL, with no variability allowance. Bhatt DL, et al. N Engl J Med. 2019;380:11-22.

REDUCE-IT: Baseline characteristics¹

Characteristics ¹	lcosapent ethyl (n=4,089)	Placebo (n=4,090)
Age (years), Median (Q1–Q3)	64.0 (57.0–69.0)	64.0 (57.0–69.0)
Female, n (%)	1,162 (28.4%)	1,195 (29.2%)
Non-white, n (%)	398 (9.7%)	402 (9.8%)
CV Risk Category, n (%)		
Secondary Prevention Cohort	2,892 (70.7%)	2,893 (70.7%)
Primary Prevention Cohort	1,197 (29.3%)	1,197 (29.3%)
Ezetimibe Use, n (%)	262 (6.4%)	262 (6.4%)
Statin Intensity, n (%)		
Low	254 (6.2%)	267 (6.5%)
Moderate	2,533 (61.9%)	2,575 (63.0%)
High	1,290 (31.5%)	1,226 (30.0%)
T2DM, n (%)	2,367 (57.9%)	2,363 (57.8%)
TG (mmol/L), Median (Q1–Q3)	2.5 (2.0–3.1)	2.4 (2.0–3.1)
HDL-C (mmol/L), Median (Q1–Q3)	1.0 (0.9–1.2)	1.0 (0.9–1.2)
LDL-C (mmol/L), Median (Q1–Q3)	1.9 (1.6–2.3)	2.0 (1.6–2.3)
TG Category, n (%)		
<1.7 mmol/L	412 (10.1%)	429 (10.5%)
1.7-<2.3 mmol/L	1,193 (29.2%)	1,191 (29.1%)
≥2.3 mmol/L	2,481 (60.7%)	2,469 (60.4%)
hsCRP (mg/L)*	2.2	2.1


71% of enrolled patients were secondary prevention¹

Adapted from Bhatt DL, et al. N Engl J Med. 2019.1

*Median observed value.

CV, cardiovascular; HDL-C, high-density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; T2DM, type 2 diabetes mellitus. **1.** Bhatt DL, *et al.* N Engl J Med. 2019;380(1):11–22 and supplementary appendix.

REDUCE-IT Key Efficacy Findings

*Composite of CV death, nonfatal MI, or nonfatal stroke. Bhatt DL, et al. *N Engl J Med*. 2019;380:11-22.

Ę

REDUCE-IT Key Efficacy Findings (cont)

End Point	Icosapent Ethyl (N=4089) no. of patients w	Placebo (N=4090)	Haza	rd Ratio (95% CI)	P Value
	51	. ,	_		
Primary composite	705 (17.2)	901 (22.0)		0.75 (0.68–0.8	3) <0.001
Key secondary composite	459 (11.2)	606 (14.8)		0.74 (0.65–0.8	3) <0.001
Cardiovascular death or nonfatal myocardial infarction	392 (9.6)	507 (12.4)		0.75 (0.66–0.8	5) <0.001
Fatal or nonfatal myocardial infarction	250 (6.1)	355 (8.7)		0.69 (0.58–0.8	l) <0.001
Urgent or emergency revascularization	216 (5.3)	321 (7.8)		0.65 (0.55–0.7	8) <0.001
Cardiovascular death	174 (4.3)	213 (5.2)		0.80 (0.66–0.9	8) 0.03
Hospitalization for unstable angina	108 (2.6)	157 (3.8)		0.68 (0.53-0.8)	7) 0.002
Fatal or nonfatal stroke	98 (2.4)	134 (3.3)		0.72 (0.55–0.9	3) 0.01
Death from any cause, nonfatal myocardial infarction, or nonfatal stroke	549 (13.4)	690 (16.9)		0.77 (0.69–0.8	6) <0.001
Death from any cause	274 (6.7)	310 (7.6) 0.4	0.6 0.8	0.87 (0.74–1.02	2) —
			Icosapent Ethyl Better	Placebo Better	

Imperial College London

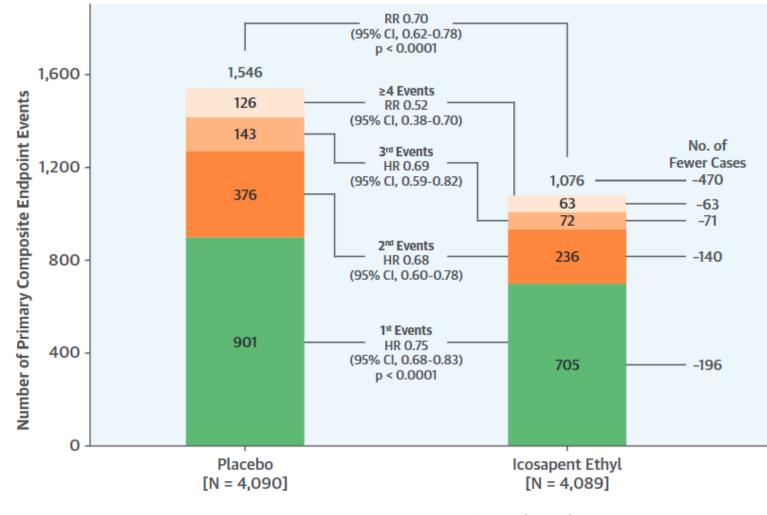
Ę

Bhatt DL, et al. N Engl J Med. 2019;380:11-22.

REDUCE-IT CV Benefit of EPA Independent of LDL-C Levels

Baseline Characteristics	lcosapent Ethyl (n = 4086)	Placebo (n = 4089)
TGs (mg/dL), median (Q1-Q3)	216.5 (176.5-272.0)	216.0 (175.5-274.0)
HDL-C (mg/dL), median (Q1-Q3)	40.0 (34.5-46.0)	40.0 (35.0-46.0)
LDL-C (mg/dL), median (Q1-Q3)	74.0 (61.5-88.0)	76.0 (63.0-89.0)
TG Category, n (%)		
< 150 mg/dL	412 (10.1)	429 (10.5)
≥ 150 to < 200 mg/dL	1193 (29.2)	1191 (29.1)
≥ 200 mg/dL	2481 (60.7)	2469 (60.4)

	Icosapent Ethyl Placebo				HR (95% CI)	<i>P</i> Value
Primary Composite Baseline LDL-C*	Endpoint:					.62
≤ 67 mg/dL	244/1481 (16.5%) 302/1386 (21.8%)				0.72 (0.61, 0.85)	
> 67 to ≤ 84 mg/dL	248/1347 (18.4%) 307/1364 (22.5%)		_		0.81 (0.68, 0.96)	
> 84 mg/dL	213/1258 (16.9%) 292/1339 (21.8%)				0.74 (0.62, 0.89)	
	0.2	0.6	1.0	1.4	1.8	
	Icosap	ent Ethyl Bei	ter F	Placebo Bo	etter	


CV benefit for EPA reported even among patients in the lowest baseline LDL-C quartile

Imperial College London

Ę

*Derived in thirds. Bhatt DL, et al. N Engl J Med. 2019;380:11-22.

REDUCE-IT Reduction in Recurrent and Total Ischemic Events

Imperial College London

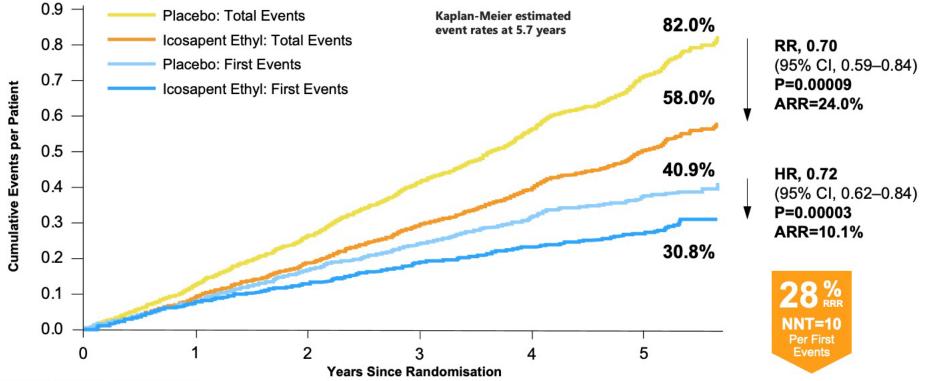
Ę

Reduced Dataset Event No. $\blacksquare 1^{st} \blacksquare 2^{nd} \blacksquare 3^{rd} \blacksquare 2^{4}$

Bhatt DL, et al. J Am Coll Cardiol. 2019;74:1159-1161.

There were similar risk reductions across several endpoints in prior MI patients¹

Endpoint	lcosapent Ethyl n/N (%)	Placebo n/N (%)	lcosapent Ethyl vs Placebo HR (95% Cl)	ARR	Log-Rank P value
Primary Composite Endpoint	378/1,870 (20.2)	475/1,823 (26.1)	0.74 (0.65–0.85)	5.9%	0.00001
Key Secondary Composite Endpoint	248/1,870 (13.3)	328/1,823 (18.0)	0.71 (0.61–0.84)	4.7%	0.00006
Cardiovascular Death or Nonfatal Myocardial Infarction	215/1,870 (11.5)	285/1,823 (15.6)	0.71 (0.60–0.85)	4.1%	0.0002
Fatal or Nonfatal Myocardial Infarction	147/1,870 (7.9)	211/1,823 (11.6)	0.66 (0.53–0.81)	3.7%	0.00009
Urgent or Emergent Revascularisation	124/1,870 (6.6)	188/1,823 (10.3)	0.62 (0.49–0.78)	3.7%	0.00003
Cardiovascular Death	84/1,870 (4.5)	116/1,823 (6.4)	0.70 (0.53–0.92)	1.9%	0.01
Hospitalisation for Unstable Angina	65/1,870 (3.5)	99/1,823 (5.4)	0.63 (0.46–0.86)	1.9%	0.003
Fatal or Nonfatal Stroke	51/1,870 (2.7)	62/1,823 (3.4)	0.79 (0.55–1.14)	0.7%	0.21
Total Mortality, Nonfatal Myocardial Infarction, or Nonfatal Stroke	292/1,870 (15.6)	367/1,823 (20.1)	0.75 (0.64–0.87)	4.5%	0.0002
Total Mortality	136/1,870 (7.3)	163/1,823 (8.9)	0.80 (0.64–1.00)	1.6%	0.054
Adapted from Gaba P, <i>et al. J Am Coll Cardiol.</i> 2022. ¹			apent Ethyl Better Placebo Better		


Prior MI subgroup data are available from pre-specified and post hoc analyses of the REDUCE-IT data.¹ Median follow-up 4.8 years.¹

ARR, absolute risk reduction; CI, confidence interval; HR, hazard ratio; MI, myocardial infarction.

1. Gaba P, et al. J Am Coll Cardiol. 2022;79(17):1660-1671.

Icosapent ethyl demonstated an NNT of 10 in patients with diabetes and established CVD vs placebo¹

Time to first and total primary composite* endpoint events

Adapted from Bhatt DL, et al. ADA. 2020.1

Diabetes subgroup data are available from pre-specified and post hoc analyses of the REDUCE-IT data.1

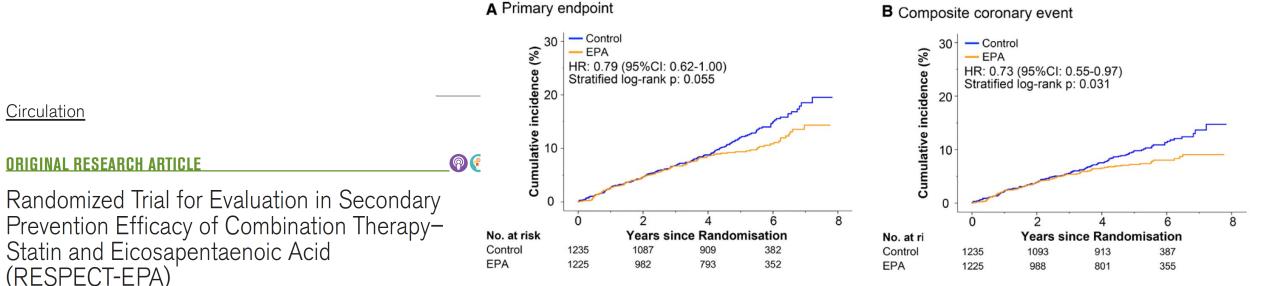
*The composite of CV death, non-fatal MI, non-fatal stroke, coronary revascularisation, hospitalisation for unstable angina.

ARR, absolute risk reduction; CI, confidence interval; CV, cardiovascular; CVD, cardiovascular disease; HR, hazard ratio; NNT, number needed to treat; RR, rate ratio.

1. Bhatt DL, et al. ADA. 2020. Chicago (Presentation).

REDUCE-IT Safety

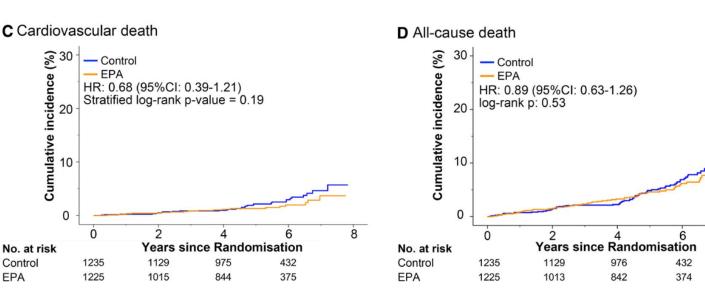
Ē


lcosapent Ethyl (n = 4089)	Placebo (n = 4090)	<i>P</i> Value
3343 (81.8)	3326 (81.3)	.63
1252 (30.6)	1254 (30.7)	.98
321 (7.9)	335 (8.2)	.60
88 (2.2)	88 (2.2)	1.00
94 (2.3)	102 (2.5)	.61
111 (2.7)	85 (2.1)	.06
62 (1.5)	47 (1.1)	.15
14 (0.3)	10 (0.2)	.42
41 (1.0)	30 (0.7)	.19
	Ethyl (n = 4089) 3343 (81.8) 1252 (30.6) 321 (7.9) 88 (2.2) 94 (2.3) 111 (2.7) 62 (1.5) 14 (0.3)	Ethyl (n = 4089)Placebo (n = 4090) $3343 (81.8)$ $3326 (81.3)$ $1252 (30.6)$ $1254 (30.7)$ $321 (7.9)$ $335 (8.2)$ $88 (2.2)$ $88 (2.2)$ $94 (2.3)$ $102 (2.5)$ $111 (2.7)$ $85 (2.1)$ $62 (1.5)$ $47 (1.1)$ $14 (0.3)$ $10 (0.2)$

- AF occurred in more patients treated with EPA than placebo (5.3% vs 3.9%, *P* = .003), mostly in the form of recurrent AF in patients with a history of AF
 - 28% reduction in fatal and nonfatal stroke with EPA was also seen in this subset of patients with AF

Imperial College London

Bhatt DL, et al. N Engl J Med. 2019;380:11-22.


Validation in RESPECT EPA with 2g IPE

Katsumi Miyauchi[®], MD; Hiroshi Iwata, MD; Yuji Nishizaki[®], MD; Teruo Inoue, MD; Atsushi Hirayama, MD; Kazuo Kimura[®], MD Cardiovascular death

Yukio Ozaki, MD; Tovoaki Murohara, MD; Kenji Ueshima, MD; Yoshihiro Kuwabara, MD; Sachiko Tanaka-Mizuno, PhD;

Naotake Yanagisawa[®], PhD; Tosiya Sato[®], PhD; Hiroyuki Daida[®], MD; and RESPECT-EPA Investigators

8

Meta-analysis of Omega 3 trials show distinct differences by type of Omega 3

Course has

T-t-UAuthor Vors

Chattetter for each study

		Group by	Trial/Author, Year	uthor, Year Statistics for e		tistics for each study			
		Subgroup within study		Rate ratio	Lower limit	Upper limit	p-Value		ative eight
		EPA	JELIS, 2007	0.93	0.56	1.55	0.79		13-43
			Nosaka et al., 2014	0.20	0.02	1.71	0.14	k	0.75
			REDUCE-IT, 2018	0.82	0.67	1.00	0.05		85.83
	EClinicalMedicine 38 (2021) 100997			0.82	0.68	0.99	0.04		
		EPA + DHA	HARP, 1995	0.32	0.01	7.78	0.48	k	0.03
	Contents lists available at ScienceDirect		SHOT, 1996	1.62	0.47	5-53	0.44	└─── →	0.20
			GISSI-P, 1999	0.84	0.72	0.98	0.02		12.48
63334	EClinicalMedicine		SCIMO, 1999	0.34	0.01	8.26	0.50	k *	0.03
	Lennicanviculente		OFAMI, 2001	1.00	0.38	2.66	1.00	k + +	0.31
			Brox et al., 2001	0.17	0.01	4.09	0.27	k	0.03
ELSEVIER	journal homepage: https://www.journals.elsevier.com/eclinicalmedicine		FAAT, 2005	1.01	0.40	2.54	0.98	k k k k k k k k k k k k k k k k k k k	0.35
			Raitt et al., 2005	0.40	0.08	2.06	0.27	k	0.11
Research paper			SOFA, 2006	0.46	0.18	1.21	0.12	<u>← </u>	0.32
			GISSI-HF, 2008	0.93	0.84	1.03	0.15	-+	29.03
Effect of omega	-3 fatty acids on cardiovascular outcomes: A systematic		OMEGA, 2009	0.95	0.56	1.59	0.84		1.12
review and met			AlphaOmega, 2010	0.99	0.73	1.34	0.94		3.19
	la-allalysis		DO IT, 2010	0.63	0.25	1.64	0.35	k ∎ 	0.34
Safi II Khana Ahma	d N. Lone ^a , Muhammad Shahzeb Khan ^b , Salim S. Virani ^c ,		SU.FOL.OM3, 2010	0.82	0.47	1.42	0.48	⊧	0.99
Deger C. Dlumenthe	l ^{d,e} , Khurram Nasir ^{f,g} , Michael Miller ^h , Erin D. Michos ^{d,e} ,		ORIGIN, 2012	0.98	0.88	1.10	0.78		22.73
			Risk & Prevention, 2013	1.04	0.82	1.32	0.74	→ •−	5-49
Christie M. Ballanty	ne ^c , William E. Boden ⁱ , Deepak L. Bhatt ^{j,*}		Shinto et al., 2014	3.00	0.12	73.64	0.50	k	0.03
			AREDS2, 2014	0.96	0.38	2.41	0.93	<u>k ∎ </u>	0.35
			Derosa et al., 2016	0.34	0.01	8.31	0.51	k *	0.03
			ASCEND, 2018	0.82	0.68	0.99	0.04		8.49
			VITAL, 2018	0.96	0.76	1.21	0.73		5.71
			STRENGTH, 2020	1.08	0.90	1.31	0.40	-+•	8.63
				0.94	0.89	0.99	0.02		
		Overall		0.93	0.88	0.98	0.01		
		I ² = 0% P for interaction = 0.19						0.5 1 2	
		r for interaction = 0.19						Favors Omega-3 FA Favors Control	

Conclusion

- Use high TG despite statins and controlled risk factors to identify higher risk patients
- IPE and especially 4g daily reduces CV events, total events with greater absolute benefits in higher risk groups like prior MI and those with DM
- Excess risk of AF but not strokes
- Totality of data suggests there are differences between Omega 3 preparations with CV benefits with IPE especially at 4g