Improving quality of life in hypertrophic cardiomyopathy

Carolyn Ho, MD Brigham and Women's Hospital – Harvard Medical School Boston, MA, USA

Seeing the forest through the trees - Diagnosing and treating hypertrophic cardiomyopathy

DISCLOSURES

- Research Support
 - Bristol Myers Squibb
 - Pfizer
 - Cytokinetics
 - Biomarin
 - Tenaya
- Consulting/Advisory Boards/Honoraria
 - Bristol Myers Squibb
 - Cytokinetics
 - Tenaya
 - Biomarin
 - Viz.ai
 - Lexicon

HCM sarcomere variants increase force generation and impair sarcomere relaxation

Adapted from: Toepfer CN, et al. Circulation. 2020. Slide courtesy of Eric Wei, MD, PhD

Traditional therapies to reduce LVOT obstruction and improve symptoms

Traditional therapies treat symptoms but do not target underlying disease biology. Slide courtesy of Eric Wei, MD, PhD

Metoprolol versus Placebo

Improved NYHA Functional Class, CCS Class, and KCCQ Overall Summary Score

N=29

- Mean age 60y, 62% male
- 62% NYHA II
- 14 days placebo or metoprolol up to 150 mg (7 days at steady state) then cross-over

No improvement in:

- Exercise capacity
- pVO2
- NTproBNP

Anne M. Dybro et al. J Am Coll Cardiol 2021; 78:2505-2517.

Cardiac myosin inhibitors target HCM pathophysiology

• Mavacamten: allosteric inhibitor of myosin ATPase

- Improves balance of myosins in the SRX/DRX conformations
- Reduces number of myosin-actin cross-bridges → decreases contractility

Anderson RL, et al. PNAS 2018; Toepfer CN, et al. Circulation. 2020. Slide courtesy of Eric Wei, MD, PhD

MAVACAMTEN VS AFICAMTEN

CMI TRIAL OUTCOMES: FEEL AND FUNCTION

EXPLORER-HCM: PRIMARY ENDPOINT

	Mavacamten (N = 123) n (%)	Placebo (N = 128) n (%)	Difference (95% CI) P value
EITHER ≥1.5 ml/kg/min increase in pVO ₂ with ≥1 NYHA class improvement OR ≥3.0 ml/kg/min increase in pVO ₂ with no worsening of NYHA class	45 (36.6)	22 (17.2)	19.4 (8.7, 30.1) 0.0005
<u>BOTH</u> ≥3.0 ml/kg/min increase in pVO ₂ AND ≥1 NYHA class improvement	25 (20.3)	10 (7.8)	12.5 (4.0, 21.0) 0.0005*

EXPLORER-HCM

REDWOOD-HCM

NYHA functional class

NYHA Functional Class

EXPLORER-HCM: MEAN KCCQ-OS IMPROVEMENT GREATER THAN MOST MEDICATION TRIALS

REDWOOD-HCM: Cohort 4

Kansas City Cardiomyopathy Questionnaire

Mean improvement 10.6 points

VALOR-HCM

Mavacamten provided adequate clinical improvement for patients to defer invasive SRT

EXPLORER-HCM

Modest Change in LVEF

			Number	of patients	s at visit			
Mavacamten	123	116	115	111	111	107	113	114
Placebo	128	115	117	120	119	121	121	119

LARGE DECREASE IN LVOT GRADIENT

Mavacamten	Number of patients at visit		
	122	118	
Placebo	127	123	

Some patients (~7%) had more dramatic (reversible) decrease in LVEF (<50%)

Olivotto, et al. Lancet. 2020

WHERE DO MYOSIN INHIBITORS CURRENTLY FIT INTO PRACTICE? Symptomatic obstructive HCM

Exploratory: Test the impact of improving obstruction

• Does gradient reduction improve symptoms in patients with multiple comorbidities?

"Destination Therapy" Long term medical therapy

Bridge to decision for invasive septal reduction therapy

FUTURE:

- Long-term safety/efficacy
- 1st line therapy
- Non-obstructive HCM
- Pediatric HCM
- Disease modification

just relax

CMIs in non-obstructive HCM: Phase 3 Trials

ODYSSEY - Mavacamten ACACIA – Aficamten

AFICAMTEN CLINICAL TRIALS

Phase II dose-finding trial
of aficamten in oHCMPhase III trial of aficamtem
in oHCMAficamten long term
extensionAficamten vs
metoprololJan 2020 – June 2023Feb 2022 – Sep 2023May 2021 – March 2026June 2023 – Oct 2025

AFICAMTEN PHASE III STUDY: SEQUOIA-HCM

MULTI-CENTER, RANDOMIZED, DOUBLE-BLIND, PLACEBO-CONTROLLED TRIAL TO EVALUATE THE EFFICACY AND SAFETY OF *AFICAMTEN* (CK-3773274) IN ADULTS WITH SYMPTOMATIC HYPERTROPHIC CARDIOMYOPATHY AND LEFT VENTRICULAR OUTFLOW TRACT OBSTRUCTION **Patient Population:**

- Enroll 270 patients, randomized on a 1:1 basis to receive aficamten or placebo in addition to standard-of-care treatment
- Regions: United States, United Kingdom, European Union, Israel, and China
- Symptomatic oHCM Patients
 - LVOT-G: Resting <u>></u>30mmHg and post-Valsalva <u>></u>50mmHg
 - NYHA Class II or III
- Standard of Care medications
 - Patients on beta-blockers, verapamil, diltiazem, or disopyramide should have been on stable doses for >6 weeks prior to randomization and anticipate remaining on the same medication regimen during the trial. Patients treated with disopyramide must also be concomitantly treated with a beta blocker and/or calcium channel blocker.

SEQUOIA-HCM: PRIMARY OBJECTIVE/ENDPOINT

Primary Objective	Primary Endpoint
To evaluate the effect of <i>aficamten</i> on exercise capacity in patients with symptomatic obstructive hypertrophic cardiomyopathy (oHCM)	 Change in peak oxygen uptake (pVO₂) measured by cardiopulmonary exercise testing (CPET) from Baseline to Week 24

SEQUOIA-HCM: SECONDARY OBJECTIVE/ENDPOINT

To evaluate the effect of <i>aficamten</i> on:	Secondary Endpoint
Health status	 Change in Kansas City Cardiomyopathy Questionnaire – Clinical Summary Score (KCCQ-CSS) from Baseline to Week 12 and Week 24
New York Heart Association (NYHA) Functional Classification	 Proportion of patients with ≥ 1 NYHA Class improvement from Baseline to Week 12 and Week 24
Post-Valsalva left ventricular outflow tract gradients (LVOT-G)	 Change in post-Valsalva LVOT-G from Baseline to Week 12 and Week 24 Proportion of patients with post-Valsalva LVOT-G <30 mmHg
Exercise capacity	Change in Total Workload during cardiopulmonary exercise test (CPET) from Baseline to Week 24
Duration of eligibility for septal reduction therapy	 Duration of eligibility for septal reduction therapy (SRT) during the 24-week treatment period in patients who were eligible for SRT at baseline

- Incidence of reported major adverse cardiac events (cardiovascular [CV] death, cardiac arrest, nonfatal stroke, non-fatal myocardial infarction, CV hospitalization)
- Incidence of new onset persistent atrial fibrillation
- Incidence of appropriate implantable cardiac defibrillator (ICD) discharges and aborted sudden cardiac death
- Incidence of left ventricular ejection fraction (LVEF) <50%
- Incidence of treatment emergent adverse events

HCM Genetics

- Genetic testing is (+) in:
 - **30%** of all-comers with HCM
 - >60% of HCM with (+)FH
- Variants in **Sarcomere Genes** are most definitively and frequently associated with HCM
- MYH7 and MYBPC3 collectively account for >80% of all clinical cases of HCM in which the underlying mutation has been defined.

Teekakirikul, P. *et al.* (2012) 'Hypertrophic cardiomyopathy: translating cellular cross talk into therapeutics', *JCB*, 199(3), pp. 417–421.