Physicians' Academy for Cardiovascular Education

Coronary plaque characteristics and CAC score in relation to CHD risk in CAD patients

Coronary Artery Plaque Characteristics Associated With Adverse Outcomes in the SCOT-HEART Study

Literature - Williams MC, Moss AJ, Dweck M et al. - JACC 2019; 73(3):291-301

Introduction and methods

Non-invasive imaging with coronary computed tomography angiography (CTA) can provide structural information of the coronary artery wall. Presence and constituents of atherosclerotic plaque can be assessed, even in the absence of flow-limiting disease. Positive remodeling, low attenuation plaque, spotty calcification, and the “napkin ring” sign can be determined on coronary CTA, which have been described to serve as correlates for adverse plaque characteristics, such as a large necrotic core, microcalcification and a thin fibrous cap. These plaque characteristics are associated with an increased risk of subsequent acute coronary syndromes (ACS) [1-3].

Use of coronary CTA on top of routine care has been shown to improve diagnostic certainty and patient care in patients with stable chest pain in the COmputed Tomography of the HEART (SCOT-HEART). This lead to a reduced rate of coronary heart disease (CHD) death or non-fatal myocardial infarction (MI) [4-6]. However, it remains unknown whether further risk stratification and targeted intensification of therapy can result in additional benefits in patients with adverse plaque characteristics.

This secondary post-hoc analysis (n=1.769) of the SCOT-HEART trial determined the extent of adverse coronary artery plaque characteristics on coronary CTA and their association with subsequent clinical outcomes. The SCOT-HEART trial was a multicenter controlled trial of coronary CTA in outpatients (n=2.073) with suspected angina pectoris due to CAD. Participants were randomized to standard care or coronary CTA on top of standard care and followed for five years [7]. CV risk was assessed using the ASSIGN score, a score validated for the Scottish population [8]. Coronary artery calcium (CAC) score was assessed on non-contrast computed tomography (CT) using the Agatston scoring method. Coronary arteries were characterized based on stenosis severity: normal, non-obstructive, or obstructive. For each of 15 coronary segments the presence or absence of the following characteristics was assessed: positive remodeling, low attenuation plaque, spotty calcification, and the “napkin ring” sign. An individual adverse plaque was defined as one with positive remodeling or low-attenuation plaque. The primary clinical endpoint was the occurrence of CHD death or non-fatal MI.

Main results

Plaque characteristics

Coronary artery stenosis

adverse plaque had a >10-fold increased rate of CHD death or nonfatal MI at 5 years (HR: 11.50, 95%CI: 3.39-39.04, P<0.001).

Coronary artery calcium score


This post-hoc analysis of the SCOT-HEART trial demonstrated that adverse coronary plaque characteristics on coronary CTA provide prognostic information on adverse events up to five years in outpatients with suspected angina pectoris due to CAD. Although these findings suggest that plaque composition and its hemodynamic consequences are associated with future MI, the main factor governing patient outcomes appears to be the burden of coronary atherosclerosis. Patients with obstructive CAD and adverse plaques showed the highest rates of CHD death and non-fatal MI during follow-up, suggesting the identification of a subgroup of patients who would benefit from more intensive medical therapy.

Editorial comment

In their editorial comment [9], Shaw et al. discuss several interesting lessons that emerged from the secondary analysis conducted by Williams et al..

The observation that the presence of adverse plaque characteristics was associated with risk of CHD death or nonfatal MI in univariable analysis, but that this was no longer a significant relation in a multivariable model, remind us that plaque vulnerability does not equal patient vulnerability. Multiple factors influence plaque burden, and the dynamic interplay of all these factors and their effect on CV event risk is difficult to assess. The data showed that adverse plaque was predictive at 2 years, but not at 5 years of follow-up, in line with the previously described concept of a temporal nature of risk. Disease progression and intervening therapeutic intervention can attenuate the prognostic relationship between a factor and outcomes.

A notable finding of the SCOT-HEART trial was that CAC was predictive of CHD outcomes in models in which the presence of obstructive CAD and markers of adverse plaque were not. The authors note that that CAC score reflects the overall burden of atherosclerosis and is thus a major determinant of risk. The data obtained in those with minimal CAC showed an ˜3-fold increased risk of CAD events. Thus, the data support the role of CAC scanning alone as a means for selective use of CTA, especially in those categorized with a low pre-test risk score.

The authors conclude that with the ability to perform whole-heart atherosclerosis quantification and characterization by non-invasive imaging, we can learn to understand CAD risk better based on diverse atherosclerotic-disease markers in large clinical populations. It is important to pay attention to the dynamicity rather than the cross-sectional characteristics of the plaques. “We have so much more to learn about atherosclerosis and patient vulnerability.”


Show references

Find this article online at JACC

Share this page with your colleagues and friends: